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Letters

Computation of the Hecken Impedauce Function

J. H. CLOETE

The Dolph-Chebyshev impedance function derived by

Klopfenstein [1] has discontinuities at the taper ends which

introduce unwanted effects in certain applications. The Heeken

impedance function [2] is not optimum in the Dolph–Chebyshev

sense, but achieves matching without impedance steps. For any

bandwidth and maximum magnitude of reflection coefficient in

the passband, the Hecken taper is only slightly longer than the

opt imum taper [2]. ~ecken’s near-optimum taper is therefore an

attractive alternative to the optimum taper when impedance

disconiinuities are undesirable.

The equation for the near-optimum impedance function

contains a transcendental function G(B,&) which is tabulated in

Hecken’s paper. The function is given by

JBe—
G(B,<) = — 10{B41 – ~’} d<’

sinh B ~

where 10(Z) is the modified Bessel function of the first kind and

zero order.

Instead of using the tables, G(B,~) may be computed re-

cursively as

G(B,<) = ~B ,~oakbk

where

ao=l a~ =

be=< bk=

The derivation is based on

[3] and is not given here,

w
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the method described by Grossberg
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Synthesis of Certain Transmission Lines Employed in

Microwave Integrated Circuits

RAYMOND CRAMPAGNE AND GRATIA KHOO

With a quasi-TEM approximation, the characteristic parame-

ters of numerous structures used as hyperfrequency micro-

electronics transmission lines can be calculated with the aid

of conformal mapping. Simple theoretical formulas are rarely

used since they bring into play the function K(k)/K’(k) where

K(k) is the complete elliptic integral of the first type, K’(k) its

complementary function, and k its argument.

Some geometrical configurations which can be treated are

shown in Fig. 1(a)–(c). This method is particularly interesting

since expressions of k (argument of elliptic integral) as a func-

tion of geometric dimensions are often simple.

The infinite dielectric thickness hypothesis made in certain

cases is, in general, justified by the spacing between conductors.

Although this method is surprisingly simple accompanied by a

large application domain, it has been put aside by many research

workers. Instead, sophisticated numerical methods like those of

finite differences and finite elements [1] have been preferred.

These methods are applicable for the analysis of transmission

lines but not for the synthesis, Moreover, they do not lead to
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