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Computation of the Hecken Impedance Function
J. H. CLOETE

The Dolph-Chebyshev impedance function derived by
Klopfenstein [1] has discontinuities at the taper ends which
introduce unwanted effects in certain applications. The Hecken
impedance function {2] is not optimum in the Dolph-Chebyshev
sense, but achieves matching without impedance steps. For any
bandwidth and maximum magnitude of reflection coefficient in
the passband, the Hecken taper is only slightly longer than the
optimufn taper [2]. Hecken’s near-optimum taper is therefore an
attractive alternative to the optimum taper when impedance
discontinuities are undesirable.

The equation for the near-optimum impedance function
corntains a transcendental function G(B,&) which is tabulated in
Hecken’s paper. The function is given by

¢ —
GO = ~2— | LBV = ¢ a
sinh B J,
where Iy(z) is the modified Bessel function of the first kind and
zero order.
Instead of using the tables, G(B,£) may be computed re-
cursively as

. B ®
G(B,&) = ab
(B:0) sinh B ¥='o s
where
BZ
A = 4G = e -1
¢ — & + 2kby_,
by = b, = .
0=¢ b 2k + 1

The derivation is based on the method described by Grossberg
[3] and is not given here.
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Synthesis of Certain Transmission Lines Employed in
Microwave Integrated Circuits

RAYMOND CRAMPAGNE anp GRATIA KHOO

With a quasi-TEM approximation, the characteristic param-
eters of numerous structures used as hyperfrequency micro-
electronics transmission lines can be calculated with the aid
of conformal mapping. Simple theoretical formulas are rarely
used since they bring into play the function K(k)/K’(k) where
K(k) is the complete elliptic integral of the first type, K'(k) its
complementary function, and & its argument.

Some geometrical configurations which can be treated are
sHown in Fig. 1(a)-(c). This method is particularly interesting
since expressions of k (argument of elliptic integral) as a func-
tion of geometric dimensions are often simple.

The infinite dielectric thickness hypothesis made in certain
cases is, in general, justified by the spacing between conductors.
Although this method is surprisingly simple accompanied by a
large application domain, it has been put aside by many research
workers. Instead, sophisticated numerical methods like those of
finite differences and finite elements [1] have been preferred.
These methods are applicable for the analysis of transmission
lines but not for the synthesis. Moreover, they do not lead to
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